

Journal of Advanced Applied Scientific Research (JOAASR)

Theoretical spectroscopic investigation of 3,5-bis(trifluoromethyl) phenyl isothiocyanate S.Abbas Manthiri^a, R. Raj Muhamed^{a*}

^a PG & Research Department of Physics, Jamal Mohamed College (Autonomous), Trichy 20. *corresponding author Email ID: <u>ponnu_68@yahoo.co.in</u>.

Abstract

In this work, theoretical study by using the DFT method on 3,5-bis(trifluoromethyl) phenyl isothiocyanate is reported. The FTIR and FT-Raman spectra of title compound were noted in the regions 4000–400cm⁻¹; The HOMO, LUMO and Gap energy of these compounds have been calculated and reported in this paper. Thus, our aim to explain the spectroscopic properties on the basis of the DFT quantum chemical calculations and we are interested to explain the nonlinear optical analysis. The study of structural, vibrational spectroscopic studies and nonlinear optical properties for these compounds could help to design more efficient functional photovoltaic organic compounds.

Keyword: DFT, isothiocyanate, DOS, FT-IR, FT-Raman, HOMO – LUMO.

Introduction

Thiocyanate and their complexes are important functional groups for various applications. Such as Antimicrobial drugs^{1,2} Antibiotics^{3,4}, Anti-phytopathogenic⁵, organocatalyst⁶, Thus, it is of interest to obtain information about their characteristics like density of functional groups and its homogeneity across a substrate surface or a micro spot.

Density functional theory (DFT) established by the computational quantum chemistry for studying spectroscopic properties of the molecules.

DFT calculations of FT-IR spectra for many organic molecules have shown hopeful agreement with experimental results. Therefore, in this present DFT techniques are engaged to study the inclusive FT-IR spectra (B3LYP with 6-311++G (d,p)basis set.) of the title molecule and to classify the various normal modes with greater wave number accuracy.

In the present work, we report the theoretical vibrational analysis of thiocyanate based compound. In addition HOMO-LUMO, Thermodynamical and NLO properties also calculated.

Materials and Methods Computational details

The DFT with the Becke's and Lee– Yang–Parr (B3LYP) three-parameter and hybrid functional method accepted as a costeffective approach and it has been used to compute optimized structural geometrical parameters, vibrational frequencies FT-IR and FT-Raman of the heading molecule. For all calculations are performed with Gaussian 09^5 suite of quantum chemical codes.

The structural parameters after optimized were employed calculations of the vibrational frequencies, isotropic chemical shifts and electronic properties by using B3LYP with 6-311++G(d,p) basis set.

Result and discussion Molecular geometry

The optimized bond length and bond angles of 3,5-bis(trifluoromethyl) phenyl isothiocyanate molecules along with the intermolecular hydrogen bonds of various base set.

The corresponding minimum energy obtained by B3LYP/6-311++G(d,p) method were fall on -1397.0954361. From the optimized geometry the optimized structural parameters were tabulated on Table 1 & 2.

The Geometrical parameters are obtained by computationally. For isothiocyanate the N_{15} - C_{16} , C_{16} - S_{17} bond lengths are 1.199, 1.575.

For 3,5 bis Trifluoromethyl F_1 - C_2 , C_2 - F_3 , C_2 - F_4 , C_{11} - F_{12} , C_{11} - F_{13} and C_{11} - F_{14} bond lengths are 1.349, 1.350, 1.355, 1.350, 1.349 and 1.355. For phenyl ring C-C bond lengths are 1.391, 1.398, 1.401, 1.391 and 1.394.

Vibrational analysis

The vibrational spectral analysis of 3,5-bis (trifluoromethyl) phenyl isothiocyanate compound is based on FT-IR (Fig. 2) and Raman (Fig. 3) spectra. The 3,5bis(trifluoromethyl) phenyl isothiocyanate compound consists of 20 atoms, which has 54 normal modes. The 54 normal modes of 3,5-bis (trifluoromethyl) phenyl isothiocyanate have been assigned according to the detailed motion of the individual atoms. This compound belongs to C_1 symmetry group. Table 3 represents the intensity and assignments of the title compound.

Bond length				
F_1-C_2	1.349	C_8-C_9	1.391	
C_2 - F_3	1.350	$C_{8}-H_{19}$	1.082	
C_2 - F_4	1.355	$C_{9}-C_{10}$	1.394	
C_2-C_5	1.509	$C_{9}-C_{11}$	1.509	
C_5-C_6	1.391	C_{10} - H_{20}	1.081	
$C_{5}-C_{10}$	1.393	C_{11} - F_{12}	1.350	
C_6-C_7	1.398	C_{11} - F_{13}	1.349	
$C_{6}-H_{18}$	1.082	C_{11} - F_{14}	1.355	
C_7-C_8	1.401	N ₁₅ -C ₁₆	1.199	
C ₇ -N ₁₅	1.382	C_{16} - S_{17}	1.575	

Table 1: Bond length of 3,5-bis (trifluoromethyl) phenyl isothiocyanate

Bond Angle				
$F_1-C_2-F_3$	107.5	C ₉ -C ₈ -H ₁₉	120.7	
F_1 - C_2 - F_4	106.9	$C_8 - C_9 - C_{10}$	121.0	
$F_1-C_2-C_5$	112.0	$C_8-C_9-C_{11}$	119.4	
$F_3-C_2-F_4$	106.8	C_{10} - C_{9} - C_{11}	119.5	
$F_3-C_2-C_5$	112.0	$C_9-C_{10}-H_{20}$	120.4	
$F_4-C_2-C_5$	111.3	$C_9-C_{11}-F_{12}$	112.0	
$C_2 - C_5 - C_6$	119.4	$C_9 - C_{11} - F_{13}$	112.0	
$C_2 - C_5 - C_{10}$	119.6	$C_9-C_{11}-F_{14}$	111.3	
$C_{6}-C_{5}-C_{10}$	120.9	F_{12} - C_{11} - F_{13}	107.5	
$C_{5}-C_{6}-C_{7}$	119.5	F_{12} - C_{11} - F_{14}	106.8	
C ₅ -C ₆ -H ₁₈	121.1	F_{13} - C_{11} - F_{14}	106.9	
C ₅ -C ₁₀ -C ₉	119.0	N_{15} - C_{16} - S_{17}	175.6	
C ₅ -C ₁₀ -H ₂₀	120.5	$C_8-C_7-N_{15}$	121.1	
C7-C6-H18	119.4	$C_7 - C_8 - C_9$	119.4	
C ₆ -C ₇ -C ₈	120.1	$C_7 - C_8 - H_{19}$	119.9	
$C_{6}-C_{7}-N_{15}$	118.9	$C_7 - N_{15} - C_{16}$	147.1	

Table 2: Bond angle of 3,5-bis (trifluoromethyl) phenyl isothiocyanate

Carbon-hydrogen vibrations

The aromatic structure shows the presence of C–H stretching vibrations. The vibrations assigned at 3206, 3214 and 3219 cm^{-1} by B3LYP/6-311++G(d,p) level. The value computed by B3LYP show good agreement with FT-Raman at 3219 cm⁻¹ and 3214 cm⁻¹ and the FT-IR bands at 3206 and 3219 cm⁻¹.

Carbon–carbon vibrations

The ring carbon-carbon stretching vibrations occur in the region 1646-1476 cm^{-1} . The theoretically computed values by B3LYP/6-311++G(d,p) method at 1646, 1638,1487 and 1476 cm⁻¹ for 3,5bis(trifluoromethyl) phenyl isothiocyanate shows C-C stretching vibrations. The inplane deformation vibration is at higher wavenumbers out-of-plane than the vibrations, Shimanouchi et al.⁶ gave the wavenumber data for these vibrations for different benzene derivatives from normal coordinate analysis.

Trifluromethyl vibrations

The title molecule under consideration possesses one CF₃ group in the side substituted chain. For the assignments of CF₃ group frequencies one can expect that nine fundamentals can be associated to each CF₃ group. These vibrations are CF₃ symmetric stretching, CF₃ in-plane stretching, CF₃ in-plane bending, CF₃ symmetric bending, CF₃ in-plane rocking, CF₃ out of plane rocking, CF₃ twist, CF₃ out-of-plane stretching, CF₃ out-ofplane bending vibrations, respectively. Methyl groups are generally referred as electron donating substituent's in the aromatic ring system. The C-F methyl group stretching vibrations are highly localized and generally observed in the range 1300–1100 cm⁻¹ ^{7,8}. The CF₃ symmetric stretching band obtained by computationally 1120 cm⁻¹ and Antisymmetrical stretching is observed at 1158 to 1167 cm⁻¹.

Isothiocyanates vibrations

The entire organic isothiocyanates exhibit a broad and very strong band centred around 2100 cm⁻¹ due to the isothiocyanate group. At lower concentrations (smaller layer thickness) this band shows finer resolution and gives a strong peak or shoulder between 2080-2105 cm⁻¹. This is in agreement with the observation of williams ⁹ on phenyl isothiocyanate. Isothiocyanates strong stretching vibrations are obtained by computationally 2114 cm⁻¹ range.

Figure 1: Optamized structure of 3,5-bis (trifluoromethyl) phenyl isothiocyanate

HOMO-LUMO analysis

The most important orbital's in molecule is the frontier molecular orbital's, called highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). These orbitals determine the way of molecule interacts with other species. The frontier molecular energy gap helps to characterize the chemical reactivity and kinetic stability of the molecule. A molecule with a small frontier orbital gap is more polarizable and is generally associated with a high chemical reactivity, low kinetic stability and is also termed as soft molecule¹⁰.

The conjugated molecules are characterized by a small highest occupied orbital-lowest unoccupied molecular (HOMO-LUMO) molecular orbital separation, which is the result of a significant degree of intramolecular charge transfer from the end-capping electron acceptor groups through p-conjugated path 11

The intramolecular charge transfer from the donor-acceptor group in a singledouble bond conjugated path can induce large variations of both the dipole moment and the polarizability, making FTIR and FT-Raman activity strong at the same time. The analysis of wavefunction indicates that the electron absorption corresponds to the transition from the ground state to the excited state and is mainly described by one. An electron excitation from the high occupied molecular orbital to the lowest unoccupied molecular orbital (HOMO-LUMO). Generally, the energy gap between the HOMO and LUMO decreases, it is easier for the electrons of the HOMO to be excited. The higher energy of HOMO, the easier it is for HOMO to donate electrons whereas it is easier for LUMO to accept electrons when the energy of LUMO is low. The HOMO – LUMO energy diagram as shown in the figure 4.

HOMO = -0.27143 a.u

LUMO = -0.09897 a.u

HOMO – LUMO energy gap = -0.17246 a.u

Figure 2: FT-IR spectrum of 3,5-bis (trifluoromethyl) phenyl isothiocyanate

Figure 3: RAMAN spectrum of 3,5-bis (trifluoromethyl) phenyl isothiocyanate

_	IR intensity		Raman intensity		
Frequency	B3LYP/ 6311G	B3LYP /6-311++ G(d,p)	B3LYP 6-311G	B3LYP 6-311++ G(d,p)	Assignment
798.1155	112.6328	66.6629	1.5503	3.1589	C-H bending
1012.6	21.8871	4.468	3.1304	25.8187	C-F Stretching
1120.434	5.6455	537.4498	2.5986	2.1401	C-F symmetric stretching band
1158.241	168.1496	152.8454	5.7053	1.899	CH ₃ Antisymmetrical
1167.633	296.8105	349.4353	6.7625	7.037	stretching
1250.846	62.4255	105.7398	157.4162	150.8304	C-F Stretching
1476.784	3.3248	9.5972	13.6311	9.243	C-C stretching
1487.089	34.4528	48.8727	5.2469	20.8523	C-C stretching
1638.396	60.9808	21.1469	469.1823	226.6118	C-C stretching
2114.586	2089.6183	2011.791	602.2606	436.5377	S=C=N stretching
3206.077	1.4945	1.0061	30.5163	31.566	C–H stretching
3214.359	0.8897	1.7082	55.0325	63.5126	C–H stretching
3219.524	6.384	5.4632	65.4273	71.8624	C–H stretching

Journal of Advanced Applied Scientific Research - ISSN:2454-3225 S.Abbas Manthiri et.al JOAASR-Vol-1-2-OCTOBER-2015:121-129

Table 3: Frequency and their assignments of 3,5-bis(trifluoromethyl) phenyl isothiocyanate

Figure 4: HOMO – LUMO energy diagram of 3,5-bis (trifluoromethyl) phenyl isothiocyanate

Figure 5. DOS of 3,5-bis(trifluoromethyl) phenyl isothiocyanate

The density of states (DOS) of the title compound is shown in Fig. 5. The DOS of the system defines the number of states per interval of energy at each energy level that are presented to be occupied by electrons.

DOS diagram obtained by Gauss-sum program²¹. The density distributions are not discrete like a spectral density but they are endless. A high DOS at a specific energy level shows many states that are available for occupation.

Mulliken Analysis

The atomic charge in molecules is fundamental to physics and chemistry. For instance, atomic charge has been used to describe the processes of electronegativity equalization and charge transfer in chemical reactions¹², and to model the electrostatic potential outside molecular surface^{13,14}. Mulliken atomic charges calculated at the B3LYP/6-311G++(d,p) method is collected in Table 4. The corresponding Mulliken's plot is shown in It is worthy to mention that C_2 , C_8 , C_{11} and C_{16} atoms exhibits positive charge, while C₅, C₆, C₇, C₉ and C₁₀ atoms exhibit negative charges. However all the F atoms exhibit negative charges and all the H exhibit positive atoms charge. In isothiocyanate group S atom exhibit negative charge, C and N atoms exhibit positive charge.

Atom	Mulliken atomic		
No.	charges obtained by		
	B3LYP/6-		
	311++G(d,p)		
	method		
F ₁	-0.117787		
C_2	0.944814		
F ₃	-0.080381		
\mathbf{F}_4	-0.041802		
C 5	-0.767271		
C ₆	-0.218256		
C ₇	-0.570870		
C ₈	0.230528		
C ₉	-0.169717		
C ₁₀	-0.544445		
C ₁₁	0.823383		
\mathbf{F}_{12}	-0.092239		
F ₁₃	-0.106789		
\mathbf{F}_{14}	-0.041776		
N ₁₅	0.139153		
C ₁₆	0.224543		
S ₁₇	-0.170584		
H ₁₈	0.220378		
H ₁₉	0.133461		
H_{20}	0.205655		

Table 4: Mulliken charges of individual atoms of 3,5-bis(trifluoromethyl) phenyl isothiocyanate

Figure 6: Mulliken atomic charges of 3,5-bis (trifluoromethyl) phenyl isothiocyanate

Journal of Advanced Applied Scientific Research - ISSN:2454-3225 S.Abbas Manthiri et.al JOAASR-Vol-1-2-OCTOBER-2015:121-129

Thermodynamic properties

On the basis of vibrational analysis and statistical thermodynamics, the standard thermodynamic functions: heat capacity $(C_{p,m}^{0})$, entropy (S_{m}^{0}) and enthalpy (H_{m}^{0}) were calculated using perl script THERMO.PL¹⁵. Thermodynamical functions are calculated for B3LYP/ 6-311++ G(d,p) base set. As observed from Table 5, the values of $C_{p,m}^{0}$, S_{m}^{0} and H_{m}^{0} all increase with the increase of temperature from 100 to 1000 K , which is attributed to the enhancement of the molecular vibration as the temperature increases. Figure 7 represents the correlation graph of thermodynamical functions.

	a	a	1 177
T (K)	S	Ср	ddH
	(J/mol.K)	(J/mol.K)	(kJ/mol)
100	383.1	114.7	7.89
200	484.97	186.6	23
298.15	571.3	248.01	44.43
300	572.84	249.05	44.89
400	651.58	298.5	72.37
500	722.37	335.57	104.17
600	786.11	363.09	139.17
700	843.71	383.81	176.56
800	896.04	399.72	215.77
900	943.87	412.2	256.39
1000	987.84	422.16	298.13

Figure 7: Thermodynamic correlation graph of 3,5-bis(trifluoromethyl) phenyl isothiocyanate

Table 5: Thermodynamic properties of 3,5-bis(trifluoromethyl) phenyl isothiocyanate

NLO properties

NLO effects arise from the interactions of electromagnetic fields in various media to produce new fields altered in phase, frequency, amplitude or other propagation characteristics from the incident fields¹⁶. NLO is at the forefront of current research because of its importance in providing the key functions of frequency shifting, optical modulation, optical switching, optical logic and optical memory for the emerging technologies in areas such as telecommunications, signal processing and optical interconnections¹⁷⁻²⁰. Table 6 represents the Polar, Hyperpolar coordinates and they are calculated for B3LYP/ 6-311++ G(d,p) base set.

Journal of Advanced Applied Scientific Research - ISSN:2454-3225
S.Abbas Manthiri et.al JOAASR-Vol-1-2-OCTOBER-2015:121-129

3,5-Bis(trifluoromethyl)phenyl isocyanate					
	Polar for au	Polar for esu		HyperPolar for au	HyperPolar for esu
α_{xx}	131.0575741	19.42273248	β_{xxx}	-9.0623915	-78.292719
axy	15.1438871	2.244324068	β_{xxy}	-48.6406002	-420.22074
α_{yy}	228.0268173	33.79357432	β_{xyy}	-148.765641	-1285.231
α_{xz}	2.9433399	0.436202973	β_{yyy}	-379.74493	-3280.7304
α_{yz}	8.1870814	1.213325463	β_{xxz}	-2.3890186	-20.639448
α_{zz}	78.7408886	11.66939969	β_{xyz}	-8.2957946	-71.669858
			β_{yyz}	-24.4752733	-211.44923
			β_{xzz}	6.7190387	58.047791
			β_{yzz}	53.1691939	459.344617
			β_{zzz}	-8.4604542	-73.092402
Polarizability		Anisotropy of polarizability			
	α _{Tot for au}	145.94176	$\Delta \alpha$ f	or au	134.64125
	$\alpha_{Tot for esu}$	21.628569	Δa f	or esu	19.953833

Table 6: NLO parameter table of 3,5-bis(trifluoromethyl) phenyl isothiocyanate

Conclusion

We have carried out density functional theory calculations on the structure, vibrational spectrum, hyperpolarizability and HOMO–LUMO, NLO analyses of title compound. The equilibrium geometry by B3LYP/6-311++G(d,p) level for both the bond lengths and bond angles is performed better. The electric dipole moments and first hyperpolarizability of the compound studied have been calculated by DFT method with 6-311++G(d,p) basis set. This result shows the NLO behaviour of title compound. The DFT calculated non-zero l value of this ligand shows that the title compound might have microscopic first hyperpolarizability with non-zero values obtained by the numerical second derivatives of the electric dipole moment according to the applied field strength. The thermodynamic functions (heat capacity, internal heat energy, Gibbs energy and entropy) from spectroscopic data by statistical methods were obtained for the range of temperature 100–1000 K.

References

- 1. K. Nagai, T.A. Davies, M.R. Jacobs, P.C. Appelbaum, Antimicrob. Agents Chemother.46 (2002) 1273e1280.
- 2. R. Leclerq, P. Courvalin, Agents Chemother. 46 (2002) 2727e2734.
- 3. J.C. Post, N.L. Hiller, L. Nistico, P. Stoodley, G.D. Ehrlich, Curr. Opin. Otolaryngol. Head. Neck Surg. 15 (2007) 347e351.
- 4. F. Gotz, Mol. Microbiol. 43 (2002) 1367e1378.
- 5. Henry, Martin. U.S. Patent No. 3,151,023. 29 Sep. 1964.
- 6. Herrera, Raquel P., et al. *Angewandte Chemie International Edition* 44.40 (2005): 6576-6579.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox,Gaussian, Inc., Wallingford CT, 2009.
- 8. T. Shimanouchi, Y. Kalkiuti, I. Gamo, J. Chem. Phys. 25 (1956) 1241–1245.
- 9. T. Karthick, V. Balachandran, S. Perumal, A. Nataraj, Spectrochim. Acta 107A (2013) 72–81.
- M. Karnan, V. Balachandran, M. Murugan, M.K. Murali, A. Nataraj, Spectrochim. Acta 116A (2013) 84–95.
- 11. WILLIAMS D., J. Chem. Phys. 1940 8 513.
- 12. B.J. Powell, T. Baruah, N. Bernstein, K. Brake, R.H. McKenzie, P. Meredith, M.R. Pederson, J. Chem. Phys. 120 (2004) 8608–8615.
- 13. C.H. Choi, M. Kertesz, J. Phys. Chem. A 101 (1997) 3823-3831.
- 14. S.Fliszar, Charge Distributions and Chemical Effects, Springer, New York, 1983.
- 15. P.E .Smith, J.Am.Chem.Soc.,113 (1991) 6029-6037.
- 16. J. Gao, J.Chem. Phys., 98(1993) 1975-1981.
- 17. K.K. Irikura, THERMO.PL, National Institute of Standards and Technology, 2002.
- 18. Y.X. Sun, Q.L. Hao, W.X. Wei, Z.X. Yu, L.D. Lu, X. Wang, Y.S. Wang, J. Mol. Struct.Theochem. 904 (2009) 74–82.
- 19. C. Andraud, T. Brotin, J. Am. Chem. Soc. 116 (1994) 2094–2102.
- 20. V.M. Geskin, C. Lambert, J.L. Bredas, J. Am. Chem. Soc. 125 (2003) 15651-15658.
- 21. M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, J. Am. Chem. Soc. 124 (2002) 9648– 9655.
- 22. D. Sajan, I.H. Joe, V.S. Jayakumar, J. Zaleski, J. Mol. Struct. 785 (2006) 43-53.
- 23. N. M. O'Boyle, A. L. Tenderholt and K. M. Langner. J. Comp. Chem., 2008, 29, 839-845.