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Abstract 

Two types of images are produced by Earth observation satellites, each having complementing spatial and 

spectral characteristics. Pan-sharpening (PS) is based on remote sensing and image fusion approach that 

produces a high spatial resolution multi-spectral image by merging spectral information from a low spatial 

resolution multispectral (MS) image with intrinsic spatial details from a high spatial resolution panchromatic 

(PAN) image. Traditional pan-sharpening methods continue to seek for a fused image that contains the 

necessary spatial and spectral information. This work proposes a pan-sharpening method based on a recent 

invention, convolutional sparse representation (CSR). Geometric structural characteristics are extracted from 

the PAN image using a CSR-based filtering procedure. The challenge of learning filters, convolutional basis 

pursuit denoising (CBPDN), is handled using a modified dictionary learning method based on the concept of 

Alternating Direction Method of Multipliers (ADMM). The retrieved details are put into MS bands using 

applicable weighting coefficients. Because the proposed fusion model avoids the standard patch-based 

method, spatial and structural features are preserved while spectral quality is maintained. The spectral 

distortion index SAM and the spatial measure ERGAS improve by 4.4 and 6.2 percent, respectively, when 

compared to SR-based techniques. The computational complexity is reduced by 200 seconds when compared 

to the most recent SR-based fusion technique. The proposed method's efficacy is demonstrated by reduced-

scale and full-scale experimental findings utilising the QuickBird and GeoEye-1 datasets. 
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1. Introduction 

Two important criteria separate Earth observation satellite images: spatial resolution and spectral 

resolution. The ability to differentiate structural characteristics in a photograph is measured in spatial 

resolution, which is defined as the shortest distance between two disjoint independent objects. Spectral 

resolution [1] refers to the bandwidth and sample rate at which the sensor acquires information about the 

scene. Due to technological and physical limits, remote sensing devices provide images with a trade-off 

between spatial and spectral resolutions. The majority of high-resolution optical sensors, such as IKONOS, 

QuickBird, and Worldview, provide a Panchromatic (PAN) image with low spectral resolution but high spatial 

resolution, as well as a Multi-Spectral (MS) image with low spatial resolution but high spectral resolution. 

The MS and PAN photos were taken over the same area at the same time, so the two photographs depict the 

same scene. 

Change detection, object recognition, land-cover and land-use classification are some of the remote 

sensing applications that necessitate high resolution MS (HRMS) images with high spatial and spectral 

resolution [2-3]. Image fusion is a crucial technique for merging complementary data from many input photos 

to create a composite image. Pan-sharpening (PS) is a widely used remote sensing image fusion technique that 

aims to create an HRMS image that is superior for human and machine perception than the individual input 

images. The purpose of PS is to create an HRMS image with the spatial quality of a PAN image but the 

spectral richness of an MS image. 

For more than three decades, academics have been working on remote sensing image fusion to solve 

the problem of pan-sharpening. Traditional PS methods include component substitution (CS) and multi 

resolution analysis (MRA) based methodologies [4]. This study aims to demonstrate the CSR scheme and its 

benefits in pan-sharpening in a straightforward and simple manner. The following is the paper's outline. The 

basics of traditional PS approaches, as well as the notions of SR and CSR, are discussed in Section 2. Section 

3 depicts the pan-sharpening approach based on CSR. Section 4 depicts the results and discussions from the 

smaller scale and full scale experiments. The paper comes to a close with Section 5. 

2. Background 

2.1. The generalized formulation for CS and MRA methods 

The CS and MRA approaches can be abstractly explained while highlighting the implementation 

strategy. Let Xk be a number between 1 and 2, and k to be a number between 1 and 2.... N represents the MS 

image with N bands, while Y represents the PAN image. X̅k is the estimated HRMS picture, and X̃k represents 

the MS image up-sampled to the size of the PAN image. Adding a detail image, D, to the up-sampled image, 

X̃k, yields the pan-sharpened image. 

X̅k = X̃k + gk.D; k = 1; 2…N (1) 

The detail picture, D, contains spatial information that isn't visible in the MS image bands. The image's 

dimension, D, is the same as the dimensions of the interpolated MS image and the fused image. The essential 

distinction between the CS and MRA techniques is the synthesis process by which the detail image, D, is 

estimated. The detail image determines the quality of the fused image. gk = [g1, g2….gN] is a vector of band-

specific injection gains in Eq. (1). The detail image is expressed as, in CS-based approaches. 

    D= Y- ∑ .𝑁
𝑘=1 ω𝑘X̃k                                                      (2) 

The specific CS algorithm determines the selection of parameters such as injection gains (gk) and the 

weight vector (k). For the weighted sum of MS bands, the weight vector k specifies the proportion of each 

band that must be preferred. Spectral distortion in the fused image is determined by the difference between 

the PAN image and the weighted sum of MS bands. Intensity-hue-saturation (IHS), principal component 

analysis (PCA), and the Gram-Schmidt transform (GS) are only a few of the most well-known CS-based 

approaches [5-6]. For MRA-based techniques, the following is a detail image: 

                                                          D = Y - YL                                                                                        (3) 
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YL stands for the low-pass version of PAN image Y. The type of filter used to determine YL and the injection 

gain vector gk is determined by the MRA algorithm. Some of the most well-known MRA approaches are 

wavelets, 'atrous' wavelet transform (ATWT), additive wavelet luminance proportional (AWLP), curvelet 

transform, and contourlet transform [7]. 

The CS are noted for its ability in preserving the requisite geometric features,but the fused image suffers 

from spectrum distortion. MRA methods, on the other hand, are capable of increasing spectral information 

but fall short of CS methods in terms of spatial detail enhancement. Since the reconstruction of an image from 

its sparsifying representation possesses super-resolution capability and robustness, the sparse representation 

(SR) technique has recently been widely used to improve fusion quality. 

3.2. Sparse representation 

Natural signals like images are uncommon in the dictionary, a redundant image domain. The image can 

be represented by a linear combination of a few dictionary atoms (columns) [8-9]. Let s Є Rn be a small patch 

of an image of size √𝑛x √𝑛, and D Є R m x n represent an over-complete dictionary, i.e., n« m: The image 

patch,s (which is defined as having a consistent structure), can be written as s = Dα, where is a coefficient 

vector with the fewest non-zero members feasible. This method is performed for the complete image S, which 

consists of P number of image patches, in an iterative manner. The sparse representation theory provides a 

model for estimating the coefficient vector, as shown in [10]: 

α̂ = argmin || α ||0    s.t   ||S– D α||2
2 = 0    (4) 

Where, ||. ||0 is the l0-norm that counts the number of non-zero entries. If α is adequately sparse, the 

optimization problem in Eq. (4) can be well approximated by replacing l0 norm with the l1 norm (of the vector 

α) as [11], 

α̂ = argmin || α ||1   s.t   ||S– D α||2
2 ≤ є              (5) 

Here,є 'is the error tolerance expressed as an upper bound for the sparse approximation error ||S– D α||2
2. 

Several sparse representation methods [12] can efficiently handle the l1-norm problem as described in Eq. (5). 

The Orthogonal Matching Pursuit (OMP) iterative technique is employed in this paper [13]. The OMP 

technique is a greedy iterative method for estimating the sparse coefficient vector α for a given image patch. 

The basic idea behind this technique is to discover the non-zero points of the sparse coefficients vector α one 

by one in Eq (5). 

The initial residual is assumed to be the training signal's'. The method searches the dictionary D for a 

specific column (atom) that best correlates with the current residual at each step. The residual is then iteratively 

updated by taking into account the new atom and its associated coefficient. The Least-Squares approach is 

used to update all non-zero coefficients throughout each iteration of the algorithm. An OMP algorithm's main 

advantages are its ease of implementation and speed of execution. 

3.3. SR based PS methods 

The first SR-based pan-sharpening solution was proposed by Li and Yang [14], and it was regarded as 

a restoration problem. The fused image patches are thought to be sparse when compared to a dictionary 

constructed from random patches derived from HRMS images in this technique. The required size and 

technique for dictionary generation results in a high computational cost in order to attain appropriate fusion 

quality. There's also the possibility that the HRMS image patches aren't present. The creation of a suitable 

lexicon is the most difficult challenge in SR-based PS approaches. Based on the type of image patches used 

for dictionary creation, there are two sorts of pan-sharpening methods: I The lexicon is constructed using 

patches from both the PAN and MS images [15-16]. (ii) The PAN image patch dictionary and its low-

resolution counterpart [17-18]. Ayaset al. [19] proposed a single concise language for improving pan-

sharpened image fusion quality. The sparse representation (SR)-based approaches [20, 21] are expected to 

outperform the traditional and model-based PS methods. The SR-based techniques, on the other hand, have 

the following flaws. 
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i.  Most SR-based pan-sharpening systems use a patch-partitioning approach, with individual patch 

processing ignoring the consistency restriction. When reconstructing images, the averaging process is 

used on overlapped patches, resulting in the loss of the image's spatial structure. 

ii. Spare representation on overlapped patches produces a multi-valued representation (the representation 

generates different values for a given feature existing in the original image due to the processing of 

overlapped patches), which is not ideal for the full image. 

iii. iii. SR-based approaches are susceptible to source image mis-registration. The sparse coefficients 

evaluated for particular patches may not be able to approximate the inherent characteristics of source 

images if the images are mis-registered. It results in pseudo-Gibbs phenomenon (Ex: ringing artefacts) 

in fused image at the mis-registered regions.  

iv) The primary challenge with PS approaches is that the basic implementation mechanism lacks the 

ability to define the link between source and fused images. A newly developed signal decomposition 

strategy called as convolutional sparse representation (CSR) is presented in detail to overcome these 

difficulties in existing pan-sharpening methods. Instead of considering specific patches repeatedly, 

CSR models the entire image, preserving spatial organisation and resulting in a single-valued 

representation. 

3.4. Convolutional sparse representation  

Zeiler et al. [22] established the convolutional form of representation as a tool for changing 

convolutional neural networks. Convolutional sparse representation (CSR) is an alternative representation of 

SR for accomplishing a convolutional decomposition of an entire picture when a sparsity constraint is applied. 

The primary purpose of CSR is to describe an image as a convolution of unknown coefficient maps {xm} and 

their corresponding dictionary filters {dm}. CSR is used to model the entire picture S by regularising xm with 

a sparsity prior. 

                             𝑎𝑟𝑔𝑚𝑖𝑛 
1

2 
 || dm *xm –S ||  + 2

2 λ || xm|| 1   , m= 1.2 …. M              (6) 

The symbol '*' symbolises convolution operation, whereas λ is a regularisation parameter (a scalar) that 

regulates the balance between sparsity and reconstruction error. The letter M stands for the number of 

dictionary fitters. A finite number of training photos is used to learn the dictionary filters. 

                                  𝑎𝑟𝑔𝑚𝑖𝑛 
1

2 
 || dm* xm – sk ||  + 2

2 λ || xm|| 1   , s.t ||dm ||2 =1          (7)          

The training images needed to learn dictionary filters are denoted by sk. The coefficient maps, xm, can 

well preserve the spatial structures in images, and the learnt dictionary filters give relatively moderate 

redundancy. The CSR model in Eq. (6) can be thought of as a convolutional form of Eq. (7), and is referred 

to as CBPDN (convolutional basis pursuit denoising). Many methods have been developed in the literature to 

address the CBPDN problem, with the alternate direction method of multipliers (ADMM) framework proving 

to be the most efficient [23, 24]. The CSR model was established to look at shift-invariant sparse 

representation, which is still a valuable feature in image fusion. Furthermore, the sparse representation for the 

entire image is calculated, resulting in a single-valued and optimal representation. CSR can avoid the 

duplication caused by overlapped pixels by learning the filters from the complete image, as shown in SR-

based approaches. These features moderately maintain spatial structure consistency in the merged image. 

4. Pan-sharpening based on CSR 

There are three basic processes in the process of pan-sharpening multi-spectral photographs. I Increase 

the size of the MS image to that of the PAN image. (ii) From the PAN image, extract the high frequency detail 

(HFD) image. (iii) Injecting the HFD into the up-sampled MS image bands to reconstruct the HRMS image. 

The intensity changes that correspond to the geometric structures (edges, texture information) included in the 

PAN image are usually indicted by the high frequency detail image. As a result, the desired spatial features 

are the same as in the HFD image. By modifying the MATLAB function 'imresize' and using bicubic 

interpolation as a parameter, the MS picture bands are up-sampled to the size of the PAN image. The intensity 

component, I, is estimated from the MS image bands as, 
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I = ∑ X̃k
N
k=1                                           (8)                                                         

The histogram matching operation is performed between PAN image Y, and the obtained intensity 

component I, which results in new panchromatic image, Y̅ . The histogram matching process assists inreducing 

the inhomogeneity exists in spatial features present between the PAN image and MS image bands. 

The dictionary filters Dh are learned from the high pass version (Y̅h) of the equalized PAN image  Y̅ as 

    1/2 || {Dh}
𝑎𝑟𝑔𝑚𝑖𝑛

∑m  Dh
m * αm  -Y̅h||2

2  s.t   ||Dh
m||2 = 1                 (9) 

The high pass version, Y̅h = Y̅ - Y̅ * flp, in which * represents convolution operator, with flp is a low pass 

filter, namely Gaussian or Laplacian mask. The conventional approach to solve the above problem is based 

on alternating minimization with respect to parameters, such as coefficients vector α and the dictionary filters 

Dh. This problem can be efficiently solved by an Augmented Lagrangian framework with efficient solution of 

linear systems [25]. With the estimated dictionary filtersDh
m

, the coefficients for the original PAN image, αp 

are estimated as,  

    1/2 || {αp}
𝑎𝑟𝑔𝑚𝑖𝑛

∑m  Dh
m

 * α p
m - Y̅||2

2+ λ ∑ ||α p
m

𝑚 ||1 (10) 

The HFD image is evaluated as, 

HFD   = ∑m  Dh
m

 * α p
m(11) 

Finally, the HRMS image is reconstructed by injecting the HFD into each MS band that has been up-sampled, 

as seen below. 

X̂k =X̃k + ωk.HFD                                                   (12) 

Where, ωk= 
Xk

∑ Xk̃N
k=1

   , are the injection coefficients. The value of ωkassists in injecting the band specific 

details. The contribution of each band to the multi-spectral image is used to formulate the spatial details injection 

technique. Fig.1 shows a schematic illustration of a pan-sharpening strategy based on CSR. 

 
Figure 1:   CSR based Pan-sharpening approach. 

5. Results and Discussion: 

5.1. Reduced-scale experimentation 

While preserving the spectrum information of the MS image, the HRMS image should have the spatial features 

of a PAN image. To compensate for the lack of a reference image, various performance evaluation 

methodologies have been developed. This work [26] adapts the well-known Wald et al. technique for assessing 

the quality of the fused image at a lower size. In this technique, the source images (PAN and MS) are 

decimated by a factor equal to the resolution ratio of the PAN and MS images. The MS image is then resized 

to fit the PAN image's dimensions. The fusion process is done to damaged photographs, and the resulting 

image is compared to the original MS image, which serves as a reference image. 
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Four different notable SR methods are used for the assessment of the proposed method: SR-Li, SR-D Four 

different quality metrics are used for the performance evaluation of the CSR based pan-sharpening method 

[14, 15]. 

I. The spectral angle mapper (SAM) calculates the amount of spectral distortion in terms of the absolute 

angle between the reference and fused image spectral vectors. If the two images are spectrally identical, 

the SAM value is zero. 

II. The universal image quality index (Q) determines how comparable two images are. Q4 is a multi-

spectral extension of Q that may be used on photos with four bands. Each band's correlation, mean 

bias, and contrast variation make up Q4. 

III. The global error index ERGAS (relative dimensionless global error in synthesis) is a global error index. 

Lower ERGAS scores suggest multi-spectral band similarity. 

IV. Correlation coefficient (CC), indicates the overall quality. 

For the reduced-scale study, two datasets from IKONOS and GeoEye-1 sensors were employed. Sub scenes 

are 1024 × 1024 pixels for PAN images and 256 x 256 x 4 pixels for MS images. Because the resolution ratio 

for the considered datasets is four, these sub scenes are filtered and decimated by a factor of four. Pan-

sharpening is applied to decimated data, such as an interpolated MS image (256 x 256 x 4) and its equivalent 

PAN image (256 x 256). The MS and pan-sharpened images are displayed using a red, green, and blue band 

composition. Each dictionary filter is 8 × 8, and the total number of dictionary filters is 32 for reduced-scale 

experimentation and 64 for full-scale exploration. 
Fig. 2 & 3 demonstrate the reduced-scale outcomes of the CSR-based pan-sharpening method for the 

GeoEye-1 and IKONOS datasets, respectively. The PAN image, the original MS image, and the MS image 

interpolated to the size of the PAN image are shown in Fig. 2(a), 2(b), and 2(c), respectively.  

 
Figure 2: Visual outcomes of GeoEye-1 data at reduced scale (a) PAN image (b) Original MS image (c) 

Interpolated MS image (d) SR-Li (e) SR-D (f) PS-MSLD (g) SR-CD (h) Proposed CSR model. 

Fig. 2(d) - 2(g) shows the pan-sharpened pictures derived from the most popular SR-based techniques (g). 

Spectral is readily obvious from the tree areas in the fused image created by the SR-Li method, as illustrated 

in Fig. 2(d). In the fused images acquired by the SR-D and PS-MSLD approaches, blocking effects may be 

noticed, particularly in the building region. The proposed strategy, like the SR-CD method, outperforms the 

others tested. In terms of spectral components, the proposed CSR technique (Fig.2 (h)) preserves the spatial 

information of the PAN image and appears to be pretty near to the interpolated MS image (colours). It 

represents the least amount of spectrum distortion, which is supported by the quantitative results in Table 1. 
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Table 1: Reduced-scale quantitative results for GeoEye-1. 

 SR-Li SR-D PS-MSLD SR-CD Proposed CSR 

Q4 0.8735 0.8911 0.9138 0.9242 0.9286 

SAM 3.4213 3.3876 3.2735 3.2583 3.1127 

ERGAS 3.1653 3.2715 3.1263 3.1098 2.9986 

CC 0.8657 0.8892 0.9275 0.9289 0.9316 

 The visual consequences obtained using the QuickBird dataset at lower resolution are shown in Fig. 3. 

The variations in outcomes of contrasted procedures are difficult to discern from the visual findings. As a 

result, a piece of the image is zoomed and presented in the bottom left corner for each result. When the zoomed 

portion of multiple photos is examined, it becomes clear that the proposed CSR approach preserves spatial 

features better.  

Figure 3: Visual outcomes of QuickBird data at reduced scale (a) PAN image (b) Original MS image(c) 

Interpolated MS image (d) SR-Li (e) SR-D (f) PS-MSLD (g) SR-CD (h) Proposed CSR model 

The quantitative results in Table 2, particularly the metrics Q4 and CC values, show that the overall 

quality of the proposed method's pan-sharpened result has improved and the geometric details have been 

heightened. The retention of geometric features in the SR-Li, SR-D, and PS-MSLD results is low when 

compared to the suggested method, as evidenced by zoomed areas of the results. In the SR-CD method's result, 

the details surrounding the road are slightly blurred. The proposed method's superiority is supported by both 

visual and quantitative data. The reduced scale findings from two separate datasets, as well as the quantitative 

results, show that the suggested method's balance of spatial and spectral properties in the fused image is 

acceptable when compared to previous approaches. 
Table 2: Quantitative results for QuickBird at reduced scale 

 SR-Li SR-D PS-MSLD SR-CD Proposed CSR 

Q4 0.8914 0.8986 0.9124 0.9241 0.9283 

SAM 2.8764 2.8913 2.8565 2.8341 2.8175 

ERGAS 3.2187 3.0187 3.1094 2.9973 2.9818 

CC 0.9121 0.9236 0.9288 0.9345 0.9429 
 

5.2. Full-scale experimentation 

The full-scale assessment, which is composed of two metrics: spectral distortion index D and spatial 

distortion index Ds[27], is estimated using the quality with no reference (QNR) approach. The quality metric 

QNR, on the other hand, infers the similarity measure. The fusion technique is used on the original dataset 

without shrinking the source images; however, the MS image is up-sampled to match the size of the PAN 

image. 
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Another QuickBird dataset's full-scale results are shown in Fig.4. The PAN image of size 512 512 pixels 

is shown in Fig.4 (a). Fig. 4(c) shows an MS image that has been interpolated to the size of a PAN image. The 

original MS image, with a size of 128 x 128 pixels, is shown in Fig.4 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Visual outcomes of QuickBird data at full scale (a) PAN image (b) Original MS image (c) 

Interpolated MS image (d) SR-Li (e) SR-D (f) PS-MSLD (g) SR-CD (h) Proposed CSR model 

In comparison to the original data, the proposed CSR technique did a better job of conserving spectral 

information and improving spatial details. Table 3 shows the quality metrics that coincide. The visual and 

quantitative results support the pan-sharpening method's ability to preserve spectral purity while sharpening 

spatial features. In the pan-sharpened image of the proposed CSR approach, the road part and the margins of 

the buildings encompassed in red coloured boxes are consistent. The SR-Li and PS-MSLD approaches, on the 

other hand, smooth out the details. The blurring effect is created via the SR-D approach, as evidenced by the 

concentration on magnified regions. The numerical findings show that the suggested method outperforms the 

SR-based strategies that were compared. The proposed method has the lowest values for the distortion indices 

and the highest value for the overall quality index QNR, indicating that it outperforms the other described 

methods. 
Table 3: Quantitative results for QuickBird at full scale 

 SR-Li SR-D PS-MSLD SR-CD Proposed CSR 

Dλ 0.1186 0.1124 0.1093 0.1058 0.1021 

DS 0.0893 0.0792 0.0687 0.0611 0.0587 

QNR 0.8027 0.8173 0.8295 0.8396 0.8452 

5.3. CSR model performance analysis 

The performance of pan-sharpening is evaluated in this work using various numbers of dictionary filters, 

Dm. For dictionary filters, we utilised the numbers 16, 32, 64, and 128. The best fusion quality for the datasets 

is achieved by using 32 filters at reduced scale and 64 filters at full scale. The filter has been set to a size of 8 

× 8 pixels. The regularisation parameter is set to 0.01 for both smaller and full-scale experiments. The notion 

of filter size is chosen for this experiment based on the orthogonal matching pursuit sparse coding technique's 

criteria (OMP). Other implementation details are chosen as detailed in [24] in order to achieve the greatest 

performance. 

The SR based methods adapt patch based processing strategy, hence pan-sharpening process consume 

more time. When compared to most SR-based PS systems, CSR-based pan-sharpening takes significantly less 

time to deploy. The Table depicts the execution time analysis for the reported methods. 
Table 4: Execution timing analysis of the reported methods 

 SR-Li SR-D PS-MSLD SR-CD Proposed CSR 

Time (sec) 1875 1065 854 673 465 
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6. Conclusion 

Pan-sharpening is a popular remote sensing image fusion technique for combining spatial and spectral 

characteristics that aren't visible in a single image. The pan-sharpening approach produces high resolution 

multi spectral (HRMS) pictures, which are frequently utilised in feature extraction, classification, and other 

applications. The traditional CS, MRA, and more contemporary SR-based approaches have made significant 

progress in achieving a fused image with acceptable features. However, a pan-sharpening paradigm that 

achieves a balanced trade-off between spatial and spectral information in the fused result is desirable. This 

study demonstrates an effective mechanism for pan-sharpening multi-spectral images, which is referred to as 

convolutional sparse representation (CSR). Furthermore, the CSR approach produces such promising results 

while keeping the associated computational complexity to a minimum. The fused image is assessed both with 

and without the usage of a reference image.The first requires image downscaling, whereas the latter is done 

at native scale. The experimental part shows how the CSR-based PS approach may provide a desired HRMS 

image with limited computational resources. 
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