UNEXPECTED EFFICIENT REACTIONS OF NITROGEN NUCLEOPHILES WITH \(\alpha,\beta \)-UNSATURATED NITRILES / ESTERS

K. Suryasaraswathia, S. Saravanana,* and S. Muthusubramanianb

aCenter for Research and Postgraduate Studies in Chemistry, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi - 626 124.
bDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai -625021
Email: sivasaravanan79@gmail.com

ABSTRACT:

\(\alpha,\beta \)-Unsaturated compounds containing aldehyde, ketone, nitrile and ester functional groups are versatile precursor for the synthesis of novel organic molecules. All these compounds undergo Michael addition of carbon and other nucleophiles at \(\beta \)-carbon atom of the \(\alpha,\beta \)-unsaturated system. Different carbo- and hetero-cyclic compounds can be synthesized by varying the conditions of cyclisation of the Michael adducts. In this context, it is planned to synthesize pyrazole derivatives and diazepine derivatives by reacting \(\alpha,\beta \)-unsaturated compounds with different Nitrogen nucleophiles such as, o-phenylenediamine etc. The present investigation reports the unexpected hydrogenation of C=C in \(\alpha,\beta \)–unsaturated nitriles and the unexpected synthesis of azine derivatives from \(\alpha,\beta \)–unsaturated nitrile and hydrazinium sulphate.

Keywords: Knoevenagel condensation, \(\alpha,\beta \)–unsaturated nitrile, azine derivative, hydrogenation of C=C, hydrazinium sulphate, o-phenylenediamine

1. INTRODUCTION

The Knoevenagel condensation is one of the most useful Carbon-Carbon bond forming reactions in organic synthesis. It has been employed in the synthesis of fine chemicals, hetero Diels-Alder reaction and in the synthesis of carboxylic as well as heterocyclic compounds of biological importance1-3. Nitrogen nucleophiles such as hydrazine, o-Phenylenediamine are important precursor to many heterocyclic compounds like pyrazoles4-6, benzimidazoles7, 8, quinoxalines9,1,5-
benzodiazipine10, 11 \textit{etc}. Hydrazine finds application in the synthesis of azine derivatives12, which have anti-bacterial, anti-fungal and anti-tumour activities13. Benzoimidazoles are of significant importance in medicinal chemistry and have been recently reported to have commercial applications in veterinarian medicine, i.e., as anthelmintic agents, and in diverse human therapeutic areas, such as treatment of ulcers and as antihistaminic14. The quinoxaline derivatives have Anti-Amoebic, Anti-proliferative activity15 and Antithrombotic activity16.

2. MATERIALS AND METHODS:

2.1. Preparation of ethyl 2-cyano-3-aryl-2-propenoate (2)

0.05M of substituted benzaldehyde and 5.3ml of ethylcyanooacetate and sodium ethoxide solution (0.05 mg of Na in 10ml of ethanol) were taken in RB flask. The reaction mixture was refluxed on a water bath for 2 hours. Then it was cooled for 15 minutes and poured into crush ice with continuous stirring. A white precipitate obtained was filtered and recrystallized from alcohol.

2.1.1. Ethyl 2-cyano-3-(3-nitropheryl)-2-propenoate (2a):

\textbf{Yield} = 95\% Melting point = 140 °C

2.1.2. Ethyl 2-cyano-3-(4-methylpheryl)-2-propenoate (2b):

\textbf{Yield} = 90\% Melting point = 100-105°C

2.1.3. Ethyl 2-cyano-3-(4-N,N-dimethylaminopheryl)-2-propenoate (2c):

\textbf{Yield} = 87\% Melting point = 128°C

2.2. Reaction of ethyl 2-cyano-3-aryl-2-propenoate (2) with hydrazinium sulphate

0.005M of ethyl 2-cyano-3-aryl-2-propenoate (2) was dissolved in 30ml of ethanol in a 250ml round bottom flask. Then a solution of 3.2g of hydrazinium sulfate and 2.0g of anhydrous sodium acetate in 20ml of water was added into it. The reaction mixture was refluxed on a water bath for 3 hours. Then it was cooled and poured into ice. A yellow precipitate obtained was filtered and recrystallised from alcohol.

2.3. Preparation of 2-arylmethenemalononitrile (4)

To a stirred solution of malononitrile (0.05M) in water (20ml), diammonium hydrogen phosphate (0.26g, 4mol\%) and substitutedbenzaldehyde (0.05M) were added. Progress of the reaction was monitored by Thin – Layer Chromatography (TLC) (eluent: petroleum ether-EtOAc, 4:1). After 10 min, the solid
material obtained was filtered and recrystallised from ethanol.

2.3.1. 2-phenylmethlenemalononitrile (4d):
Yield = 95% Melting point = 90-95°C

2.3.2. 2-(4-Chlorophenylethenylene) malononitrile (4e):
Yield = 98% Melting point = 160°C

2.3.3. 2-(4-Methoxyphenylethenemalononitrile (4f):
Yield = 90% Melting point = 122°C

2.4. Reaction of 2-arylmethlenemalononitrile (4) with o-Phenylenediamine:

0.01M of 2-arylmethlenemalononitrile (4) and 1.1g (0.01M) of OPD were dissolved in 20ml of ethanol in a 250ml round bottom flask. The reaction mixture was refluxed on a water bath for 3 hours. Progress of the reaction was monitored by Thin Layer Chromatography (TLC) (eluent: petroleum ether-EtOAc, 4:1) and cooled. Then the reaction mixture was poured into ice. A Yellow precipitate obtained was filtered and purified by the use of column chromatography (eluent: petroleum ether-EtOAc, 98:2).

3. RESULTS AND DISCUSSION

α,β-Unsaturated compounds containing aldehyde, ketone, nitrile and ester functional groups are versatile precursor for the synthesis of several carbo- and hetero-cyclic compounds. They may undergo Michael addition with active methylene compounds, Aza-Michael addition with Nitrogen nucleophiles. Compounds containing more than one Nitrogen nucleophilic centre may react in more than one electrophilic centre leading to heterocyclic compounds. In this context, it is planned to synthesize pyrazole derivatives and diazepine derivatives by reacting α,β-unsaturated compounds (derived from Knoevenegel condensation) with different Nitrogen nucleophiles such as hydrazine, o-phenylenediamine etca described in Scheme 1.

Scheme 1: Proposed synthesis of pyrazolel and diazepine derivatives

Accordingly, the starting materials for the present investigation viz., 2-cyano-3-(-3-nitrophenyl)-2-propenoate (1a), ethyl 2-cyano-3-(-4-methylphenyl)-2-propenoate (1b) and ethyl 2-cyano-3-(4-N,N-dimethylaminophenyl)-2-propenoate (1c)
were prepared by Knoevenagel condensation of substituted aromatic aldehydes with ethyl cyanoacetate. They were prepared by refluxing suitably substituted aromatic aldehydes with ethyl cyanoacetate in ethanol for 2 hrs in presence of sodium ethoxide catalyst (Scheme 2). The reaction was monitored by TLC. After the consumption of starting materials, the reaction mixture was poured in to the crushed ice. The product was filtered, washed with water, and then dried. The product formed was characterized by IR and NMR spectroscopic techniques. The ethanolic solution of the Knoevenagal adduct 1 was then mixed with aqueous solution of hydrazine hydrochloride and sodium acetate in 1:1 ratio and refluxed for 2-3 hours. The TLC of the reaction mixture showed only the starting material. The same result was also obtained even when the reaction was carried out in 1:2 and 1:5 ratios of the starting material and hydrazine hydrochloride. The C=N stretching vibrations in azines is found to lie in the region 1610 – 1665 cm\(^{-1}\).

Then the compound ethyl 2-cyano-3-aryl-2-propenoate (1) was treated with hydrazinium sulphate and anhydrous sodium acetate and refluxed for 3 hours (Scheme 2). In this case, it was found that no reaction took place in 1:1 and 1:2 ratios of the compound 1 and hydrazinium sulphate. However, a yellow coloured crystalline substance (2) was obtained by the reacting compound 1 and hydrazinium sulphate in 1:5 molar ratio. The FT-IR and \(^1\)H NMR spectral data of the products 2 a-c are given in Table 1.

The FT-IR spectrum of compounds 2a-c showed a characteristic band around 2359 cm\(^{-1}\) due to the stretching of the CO\(_2\) in the atomosphere and a band around 1600 – 1620 due to the C=N stretching vibrations. Apart from this it also showed band due to C-H stretching around 3000 cm\(^{-1}\).

Table 1: FT-IR and \(^1\)H NMR spectral data of 2a-2c

<table>
<thead>
<tr>
<th>Cmpd , Yield (%)</th>
<th>M.Pt.</th>
<th>FT-IR (cm(^{-1}))</th>
</tr>
</thead>
</table>
| 2a 85 | 195 °C [17] | 3085
| | 196–197 °C | 2923
| | 124.9, 128.4 | 129.6, 133.8
| | 129.2, 131.6 | 140.5, 151.5
| 2b 82 | 154-155°C | 3015
| | 156 °C [18] | 2935
| 2c 80 | 254°C | 2910
| | 255-257°C | 1620

Lit. M.Pt

<table>
<thead>
<tr>
<th>(^1)H NMR (δ)</th>
<th>(^1)C NMR (δ)</th>
</tr>
</thead>
</table>
| 2a 7.68, t, J = 9 Hz, 2H | 124.9, 128.4
| 8.18, d, J = 9 Hz, 2H | 129.6, 133.8
| 8.35, d, J = 9Hz, 2H | 135.8, 148.5
| 8.74, s, 4 H | 150.1
| 2b 2.45, s, 6 H | 24.5, 129.6
| 7.23, d, J = 9Hz, 4H | 129.2, 131.6
| 7.72, d, J = 9Hz, 4H | 140.5, 151.5
| 8.63, s, 2 H |
The 1H NMR spectrum of 2a-c showed signals due to the aromatic protons and an olefinic proton. Hence, the NMR and IR spectra of 2a-c matches well with azine derivative of general formula ArCH=N-N=CHAr. The melting point of 2a-c also matches with the literature melting point. Therefore, the compound 2a-c may be assigned as 1,2-bisarylidenehydrazine.

Scheme 2: Synthesis of 1,2-bisarylidenehydrazine

We have already reported such unexpected synthesis of azine derivatives recently\(^20\). The formation of the azine derivative may be explained on the basis of the following mechanism: 1,4-Addition would have occurred at both the ends of hydrazine to give an intermediate, which undergoes base catalysed HX elimination leading to the azine derivative. Sodium acetate is sufficiently basic in this reaction since the leaving group (carbanion) is very much stabilised by electron withdrawing mesomeric effect of cyano and ester groups.

The Knoevenagel condensation of substituted aromatic aldehydes with malononitrile was carried out using diammonium hydrogen phosphate as catalyst by following a reported procedure. Accordingly, the starting materials for the present investigation were prepared by stirring suitably substituted aromatic aldehydes with malononitrile under solvent free condition in presence of diammonium hydrogen phosphate catalyst. The reaction was monitored by TLC. After the consumption of starting materials, the reaction mixture was poured in to the crushed ice. The product was filtered, washed with water, and then dried. The product formed was characterized by IR and NMR spectroscopic techniques.
The ethanolic solution of the Knoevenagal adducts 3a-c was then refluxed with an alcoholic solution of o-phenylenediamine in 1:1 ratio for 2 hours. The TLC of the reaction mixture showed the formation of a new product. The product was purified by column chromatography using petroleum ether-EtOAc (98:2) as eluent. The FT-IR, 1H NMR, 13C NMR and Mass spectral data of the products 4a-c are given in Table 2.

Table 2: FT-IR and 1H NMR spectral data of 4a-c

<table>
<thead>
<tr>
<th>c</th>
<th>Yield (%)</th>
<th>M.Pt. (°C)</th>
<th>FT-IR (cm$^{-1}$)</th>
<th>1H NMR (δ)</th>
<th>13C NMR (δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>80</td>
<td>89-90°C</td>
<td>3029 2914 2256</td>
<td>Ar. C-H str. Ali. C-H str. C≡N str.</td>
<td>3.27, d, J = 6Hz, 2H; 3.93, t, J = 6Hz, 1H; 7.28-7.43, m, 5H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90-91°C</td>
<td>2256</td>
<td></td>
<td>133.5, 129.7, 129.5, 129.2, 112.7, 37.1, 25.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[21] #</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>84</td>
<td>92°C</td>
<td>302529 212259</td>
<td>Ar. C-H str. Ali. C-H str. C≡N str.</td>
<td>3.24, d, J = 6Hz, 2H; 3.94, t, J = 6Hz, 1H; 7.27, d, J = 9Hz, 2H; 7.39, d, J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92-93°C</td>
<td>212259</td>
<td></td>
<td>135.3, 131.8, 130.9, 129.9, 112.4, 36.3, 25.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[22] #</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td>78</td>
<td>89°C</td>
<td>302629 16 2256</td>
<td>Ar. C-H str. Ali. C-H str. C≡N str.</td>
<td>3.25, d, J = 6Hz, 2H; 3.93, t, J = 6Hz, 1H; 7.28, m, 5H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90-91°C</td>
<td>2256</td>
<td></td>
<td>133.5, 129.7, 129.5, 129.2, 112.7, 37.1, 25.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[23] #</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: FT-IR and 1H NMR spectral data of 4a-c

The FT-IR spectrum of compounds 4a-c showed a characteristic band around 2256 cm$^{-1}$ due to the stretching of the -CN stretching vibrations and a band around 2900-3050 cm$^{-1}$ due to the aliphatic and aromatic C-H stretching vibrations. The 1H NMR spectrum of the compounds 4a-c showed signals due to –CH$_2$-CH- protons and due to the aromatic protons. The mass spectrum of the compounds 4a-c showed molecular ion peak and a base peak due to the benzyl (Ar-CH$_2$) group. Hence, the NMR, mass and IR spectra of 4a-c matches well with the compound of general formula ArCH$_2$CH(CN)$_2$. Therefore, the compound 4a-c may be assigned as 2-arylmethylmalononitrile.

Scheme 4: Synthesis of 2-arylmethylmalononitrile

The reaction of 2-phenylmethlenemalononitrile with o-phenylenediamine unexpectedly resulted in the hydrogenation of C=C in
α,β-unsaturated nitriles instead of the formation of diazepine derivative. Such type of hydrogenation catalyzed by o-phenylenediamine was not at all reported in the literature. However, conjugate reduction of activated α,β-unsaturated nitriles with Hantzsch ester, Sodium borohydride in Methanolic Pyridine24 and Ferrocenyl complex25 had been reported earlier.

The hydrogenation of α,β-unsaturated nitriles with o-phenylenediamine may be explained on the basis of the mechanism involving initial conjugate addition of o-phenylenediamine to β-carbon atom of the α,β-unsaturated nitriles followed by rearrangement and removal of o-phenylenediamine unit as o-benzoquinone. The formation of o-benzoquinone was confirmed by recording 13C NMR spectrum of the reaction mixture, which showed a signal at 189 ppm due to the C=O group.

\textbf{Scheme 5:} Proposed mechanism for the hydrogenation of α,β-unsaturated nitriles with o-phenylenediamine

4. CONCLUSION

In the present investigation, it is found that the compound ethyl 2-cyano-3-aryl-2-propenoate on treatment treated with hydrazinium sulphate and anhydrous sodium acetate under reflux condition unexpectedly yield an azine derivative $viz.$, 1,2-bisarylidenehydrazine of general formula ArCH=N-N=CHAr. Similarly, the reaction of 2-phenylmethlenemalononitrile with o-phenylenediamine under reflux condition unexpectedly resulted in the hydrogenation of C=C in α,β-unsaturated nitriles leading to 2-benzylmalononitrile instead of the formation of diazepine derivative. The formation of the azine
derivative and unexpected hydrogenation were explained by a plausible mechanism.

REFERENCES