Study of Effect of Substrate Temperature on Structure, Morphology and optical Properties of Spray Deposited Cu2ZnSnS4 Nano Thin films.

Limbraj Sopan Ravangave, Ramesh Baloji Mahewar


Cu2ZnSnS4 (CZTS) films for different substrate temperatures were deposited by using simple chemical spray technique. Analytical reagent Grade; Copper chloride (CuCl2), Zinc chloride (ZnCl2), Tin chloride (SnCl4.5H2O) and thiourea (SC(NH2)2) were used as  Cu+,  Zn+, and  Sn+ and  ion sources respectively. A set of five CZTS films was deposited using five different substrate temperatures (175, 200, 250, 275, and 300 ).  The structure, Morphology, Elemental analysis and optical properties of these films were studied using X-ray diffratometer (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and UV-Visible spectroscopy techniques respectively. The XRD spectra showed that all films are polycrystalline and exhibit kesterite tetragonal crystal structure with preferential orientation along (112) direction. The crstallinity was found increased with substrate temperature. The calculated crystallite size was increased with increase in substrate temperature. The surface morphology of CZTS films was improved with increase in substrate temperature. The film sample deposited for 275   represent excellent spherical granules CZTS crystals of increasing size from 640 nm to 1.8 μm arranged in regular fashion with some void spaces. The purity of the composition was investigated using Elemental analysis of the deposited films. The optical band gap was estimated using Tauc plots. The band gap obtained was to be in the range of 1.4 to 1.6 eV.


CZTS thin films, Spray pyrolysis, XRD, Optical band gap, Absorption coefficient

Full Text:



. Jackson P., Hariskos D., Lotter E., Paetel S., Wuerz R., Menner R., Wischmann W. , Powalla M., “New world record efficiency for Cu (In, Ga) Se2 thin film solar cells beyond 20 %”, Prog. Photovoltaics: 19 (2011) 894-897

. Jackson P., Hariskos D.,Wuerz R.,Wischmann W., Powalla M., “Compositional investigation of potassium doped Cu (In, Ga) Se2 solar cells with efficiencies up to 20.8%”, Phys. Status Solidi RRL: 8 (2014) 219–222. (doi:10.1002/pssr.201409040)

. Jackson P., Hariskos D.,Wuerz R., Kiowski O., Bauer A., Friedlmeier T M., Powalla M., “Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%”. Phys. Status Solidi RRL: 9 (2015) 28–31. (doi:10.1002/pssr.201409520)

. Friedlmeier T M., Jackson P., Bauer A., Hariskos D., Kiowski O.,Wuerz R., Powalla M., “Improved photocurrent in Cu (In, Ga) Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free”, IEEE J. Photovolt.: 5(2015) 1487–1491. (doi:10.1109/JPHOTOV.2015.2458039)

. Razykov T M., Ferekides C S. , Morel D., Stefanakos E., Ullal H S., Upadhyaya H M., “Solar photovoltaic electricity: Current status and future prospects,” Sol Energy: 85 (2011) 1580-1608.

. Rios-Flores A., Arés O., Camacho J M., Rejon V., Peña J L., “ Procedure to obtain higher than 14 % efficient thin film CdS/CdTe solar cells activated with HCF2Cl gas,” Sol Energy: 86 (2012) 780-785.

. Bosio A., Romeo N., Mazzamuto S., Canevari V., “Polycrystalline CdTe thin films for photovoltaic applications”, Prog. Crystal Growth Characterization of Mater: 52 (2006) 247-279.

. Mitzi D B., Gunawan O., Todorov T K., Wang K., Guha S., “The path towards a high-performance solution-processed kesterite solar cell”, Sol. Energy Mater. Sol.: 95 (2011) 1421–1436 (doi:10.1016/j.solmat. 2010.11.028)

. Walsh A., Chen S., Wei S H., Gong X G., “Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4”, Adv. Energy Material: 2 (2012) 400–409 (doi:10.1002/aenm.201100630)

. Ford G M., Guo Q., Agrawal R., Hillhouse H W.., “Earth abundant element Cu2Zn(Sn1−xGex)S4 nanocrystals for tunable band gap solar cells: 6.8% efficient device fabrication”, Chem. Mat.: 23 (2011), 2626–2629 (doi:10.1021/cm2002836)

. Polizzotti A., Repins I L., Noufi R., Wei S H., Mitzi D B., “The state and future prospects of kesterite photovoltaics. Energy Environ. Sci.: 6 (2013 ) 3171–3182 (doi:10.1039/C3EE41781F)

. Carrete A., Shavel A., Fontane X., Montserrat J., Fan J., Ibanez M., Saucedo E., Perez-Rodriguez A., Cabot A., “Antimony-based ligand exchange to promote crystallization in spray-deposited Cu2ZnSnSe4 solar cells”, J. Am. Chem. Soc.: 135 (2013) 15 982–15 985 (doi:10.1021/ja4068639)

. Jean J., Brown P R., Jaffe R L., Buonassisi T., Bulović V., “ Pathways for solar photovoltaics”, Energy Environ. Sci.: 8 (2015) 1200–1219 (doi:10.1039/C4EE04073B)

. Winkler MT., Wang W., Gunawan O., Hovel H J., Todorov T K., Mitzi DB.’ “Optical designs that improve the efficiency of Cu2ZnSn(S, Se)4 solar cells”, Energy Environ. Sci. 7 (2014) 1029–1036.(doi:10.1039/C3EE42541J

. Ramasamy K., Malik M A., Brien P., “Routes tocopper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells”, Chem. Commun.: 48 (2012), 5703–5714 (doi:10.1039/C2CC30792H)

. Yang K. J., “A band-gap-graded CZTSSe solar cell with 12.3%efficiency”, J. Mater. Chem. A: 4 (2016) 10 151–10 158 (doi:10.1039/C6TA01558A)

. Tanaka K., Moritake N., Uchiki H. “ Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors”, Sol Energy Mater Sol Cells : 91 (2007) 1199–1201

. Shi C., Shi G., Chen Z., Yang P., Yao M., “Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source”, Material Letters: 73 (2012) 89–91 (doi:10.1016/j.matlet.2012.01.018)

. Chan C P., Lam H., Surya C., “ Preparation of Cu2ZnSnS4 films by electro deposition using ionic liquids”, Sol Energy Mater Sol Cells: 94 (2010) 207–211.

. Sun L., He J., Kong H., Yue F Y., Yang P X., Chu J H., “Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method”, Sol Energy Mater Sol Cells : 95 (2011) 2907–2913.

. P. Mani, K. Manikandan, A. Janaki Ramya, A. Iruthaya seelan, S. Syed Zahirullah, M. Shaahul hameed and J. Joseph prince, “Influence of Molar Concentrations on Optical Properties of Copper Su-phide Thin Films by Silar Method”, International Journal of Chem. Tech. Research: 6 (7) (2014) 3573-3578

. Cullity B., Stock S. Elements of X-ray Diffraction, 3rd Ed. Princeton Hall: (2001).

. J. Tauc, Amorphous and Liquid Semiconductors, Plenum, London: (1974)

. Katagiri H., Sasaguchi N., Hando S., Hoshino S., Ohashi J., Yokota T., :Preparation films by and evaluation of Cu2ZnSnS4 thin sulfurization of E-B evaporated precursors”, Sol Energy Mater Sol Cells: 49 (1997) 407-414.

. Paier J., Asahi R., Nagoya A., Kresse G., “Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study”, Phys Rev B: 79 (2009) 115126-115128


  • There are currently no refbacks.

Copyright (c) 2020 Limbraj Sopan Ravangave, Ramesh Baloji Mahewar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.