ENHANCED SOLAR LIGHT ACTIVE CoTiO3 COUPLED Sr, N CODOPED TiO2 HETEROJUNCTION COMPOSITES: FABRICATION, PHOTOCATALYTIC PROPERTIES ANALYSIS AND DYE DEGRADATION STUDIES

Murugesan Sivakumar, Santhanam Sivakumar, Menakshisundaram Ravikrishnan, Ethiraj Krishnan

Abstract


The photocatalytic degradation efficiency of CoTiO3 coupled Sr, N codoped TiO2 has been examined by the degradation of Reactive Yellow 84 (RY 84) under solar light irradiation. The efficient CoTiO3/Sr, N codoped TiO2 based heterojunction composite was prepared via dispersed method and the results were compared with Sr, N codoped TiO2 and bare TiO2. The prepared photocatalysts were analyzed by x-ray diffraction [XRD], scanning electron microscopy [SEM] and diffused reflectance spectroscopy [UV-DRS] and Photoluminescence study [PL] , which implies the crystal structure, surface morphology, optical properties and quenching of electron role recombination. The charge separation of CoTiO3/Sr, N codoped TiO2 heterojunction composite has been improved as a result of coupling CoTiO3 and Sr, N codoped TiO2 with different energy levels and the responsible for the enhancement in the rate of photocatalytic degradation. The CoTiO3/Sr, N codoped TiO2 heterojunction composite shows better photostability at continuous photocatalytic runs. Our report will helps in the establishment and development of photocatalytic research.

Keywords


CoTiO3/Sr, N codoped TiO2, surface morphology, Photocatalytic Degradation, Reactive Yellow 84 and Solar Light

Full Text:

PDF

References


Khan MA, Ghouri AM, Res. World J. Arts Sci. Commer. 2011; 2, 276–285.

Pignatello JJ, Oliveros E, MacKay A, Crit. Rev. Environ. Sci. Technol. 2006; 36, 1–84.

Kuyukina MS, Ivshin, IB, Application of Rhodococcus in Bioremediation of Contaminated Environments. In Biology of Rhodococcus; Springer: Berlin/Heidelberg, Germany, 2010; pp. 231–262.

Mills A, Le Hunte S, J. Photochem. Photobiol. A Chem. 1997; 108, 1–35.

Di Paola A, García-López E, Marcì G, Palmisano L, J. Hazard. Mater. 2012; 211–212, 3–29.

Rauf MA, Ashraf SS, Chem. Eng. J. 2009; 151, 10–18.

Fujishima A, Hashimoto K, Watanabe T, TiO2 Photocatalysis: Fundamentals and Applications; Bkc: Tokyo, Japan, 1999; ISBN 493905103X 9784939051036.

Hoffmann MR, Martin ST, Choi W, Bahnemann DW, Chem. Rev. 1995; 95, 69–96.

Linsebigler AL, Lu G, Yates JT, Chem. Rev. 1995; 95, 735–758.

Pelaez M, Nolan NT, Pillai SC, Seery MK, et al. Appl. Catal. B Environ. 2012; 125, 331–349.

Takano T, Mino T, Sakai J, Noguchi N, Tsubaki K, Hirayama H, Appl. Phys. Express 2017; 10, 031002.

Epifani M, Giannini C, Tapfer L, Vasanelli L, J. Am. Ceram. Soc. 2000; 83, 2385–2393.

Espino-Estévez MR, Fernández-Rodríguez C, González-Díaz OM, Araña J, et.al Chem. Eng. J. 2016; 298, 82–95.

Vaiano V, Iervolino G, Sannino D, Murcia J.J, et.al., Appl. Catal. B Environ. 2016; 188, 134–146.

Ofiarska A, Pieczy´nska A, Fiszka Borzyszkowska A, Stepnowski et. al., Chem. Eng. J. 2016; 285, 417–427.

Semlali S, Pigot T, Flahaut D, Allouche J, et. al., Appl. Catal. B Environ. 2014; 150–151, 656–662.

Di Paola A, Marcì G, Palmisano L, Schiavello M, J. Phys. Chem. B 2002; 106, 637–645.

Rauf MA, Meetani M.A, Hisaindee S, Desalination 2011; 276, 13–27.

Léonard GLM, Malengreaux CM, Mélotte Q, Lambert SD, et.al., J. Environ. Chem. Eng. 2016; 4, 449–459.

Léonard GLM, Pàez CA, Ramírez AE, Mahy JG, et. al., J. Photochem. Photobiol. A Chem. 2018; 350, 32–43.

Mahy JG, Lambert SD, Tilkin RG, Wolfs C, et.al., Mater. Today Energy 2019; 13, 312–322.

Papadimitriou VC, Stefanopoulos VG, Romanias MN, Papagiannakopoulos P, et.al., Thin Solid Films 2011; 520, 1195–1201.

Kale MJ, Avanesian T, Christopher P, ACS Catal. 2013; 4(1), 116–128.

Liu G, Deng Q, Wang H, Kong DH, et.al., J. Mater. Chem., 2012; 22, 9704−9713.

Zhu J, Yin Z, Yang D, Sun T, et.al., Energy Environ. 2013; 6, 987−993.

Fahimeh C, Mansor Bin A, and Majid D, Int J Nanomedicine. 2017; 12: 1401–1413.

Wan L, Long M, Zhou D, Zhang L, et. al., Nano-Micro Lett. 2012; 4(2), 90–97

Shipra MG, and Manoj T, Cent. Eur. J. Chem. 2011; 10(2) 279-294.

Guorui Y, Wei Y, Jianan W, Honghui Y, J. Sol-Gel Sci.Technol. 2014; 122(3):117–120.

He D, Lin F, Materials Letters 2007; 61, 3385–3387.

Murov SL, Hug GL, Carmichael I, Handbook of photochemistry (2nd ed.). New York: M. Dekker. 1993.

Scherrer P, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttingen Nachrichten, 1918; 2, 98

Kennedy JH, Frese KW, J. Electrochem. Soc. 1978; 125, 709–714.

Tang JW, Zou ZG, Ye JH, J. Phys. Chem. B 2003; 107, 14265–14269

Gao B, Ma Y, Cao Y, Yang W et.al., J. Phys. Chem. B 2006; 110, 14391–14397

Pendlebury SR, Barroso M, Cowan AJ, Sivula K, Tang J, Graetzel, M., et al. Chem. Comm. 2011; 47, 716–718.

Arabatzis IM, Stergiopoulos T, Bernard MC, Labou D, et. al., Appl. Catal. B: Environ, 2003; 42, 187–201


Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 sivakumar M murugesan, sivakumar S santhanam, Krishnan E Ethiraj, Ravikrishnan M Menakshisundaram

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.