Scientometric Analysis of Mammalian Microbiome Research

Deepa Azhchath Vasu, Amritha Achuthkumar, Revathy Arya Suresh. S, Tony Grace

Abstract


Over the past few decades, microbiota research has been gaining the attention of the researchers working on the concepts of health–enhancement and overall–wellbeing. The mammalian microbiome has been progressively acknowledged as a developing research area resulting in an increased number of publications. This study intends to use scientometric and bibliometric analysis to evaluate the research development and evolution of publication patterns in the field of mammalian microbiome between 2007 and 2020. 512 published articles were retrieved from the Web of Science Core Collection and were analyzed. We assessed the quantity and quality of research output through statistical methods of bibliometric indicators, comprising a number of publications, citations, productive authors, journals and countries, using a bibliometric analysis. Scientometric analysis was performed using main path analysis, bibliometric coupling, co-word co-occurrence and co-author analysis, systematically characterizing and visualizing the trend and delivering a pivotal review of the mammalian microbiome research status quo. The results identified an increase in the number of publications over time showing the rapid research growth, with top productive countries recording the highest number of research outcomes with influential research. The bibliographic coupling revealed the most shared papers that form landmark papers and the co-author analysis indicated the most influential authors in mammalian microbiome research. The evolutionary path of the mammalian microbiome research was traced using the main path analysis identifying the milestone papers. The frequently occurred words were enumerated from co-word, co-occurrence networks. The information from this study could be a transcript for a comprehensive understanding of current mammalian microbiome research and can also direct the future and emerging trends in this research realm. 


Keywords


Mammalian microbiome; Scientometric ; Bibliometric; research trend

Full Text:

PDF

References


Martin Dworkin, David Gutnick, (2012). Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist, FEMS Microbiology Reviews, Volume 36, Issue 2, March, Pages 364–379. https://doi.org/10.1111/j.1574-6976.2011.00299.x.

Prescott, S. L. (2017). History of medicine: Origin of the term microbiome and why it matters. Human Microbiome Journal, 4, 24–25. https://doi.org/10.1016/j.humic.2017.05.004.

Eisen JA. (2015). what does the term microbiome mean? And where did it come from? A bit of a surprise. Microbiol Built Environ Netw, Available at http:// www.microbe.net/2015/04/08/what-does-the-term-microbiome-mean-andwhere-did-it-come-from-a-bit-of-a-surprise/.

Dubos, R., Schaedler, R. W., Costello, R., & Hoet, P. (1965). Indigenous, Normal, and Autochthonous Flora of the Gastrointestinal. The Journal of Experimental Medicine, 122, 67–76. https://doi.org/10.1084/jem.122.1.67.

Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology, 31(70), 107–133. https://doi.org/10.1146/annurev.mi.31.100177.000543.

Brune, A., & Friedrich, M. (2000). Microecology of the termite gut: Structure and function on a microscale. Current Opinion in Microbiology, 3(3), 263–269. https://doi.org/10.1016/S1369-5274(00)00087-4.

Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915–1920. https://doi.org/10.1126/science.1104816.

Orlich, M. J., Siapco, G., & Jung, S. (2017). Vegetarian Diets and the Microbiome. Vegetarian and Plant-Based Diets in Health and Disease Prevention, 429–461. Doi:10.1016/b978-0-12-803968-7.00024-1.

Taneja, V. (2017). Microbiome: Impact of Gender on Function & Characteristics of Gut Microbiome. Principles of Gender-Specific Medicine: Gender in the Genomic Era: Third Edition, 569–583. https://doi.org/10.1016/B978-0-12-803506-1.00027-9.

Bucci, M. (2020). Modulating the microbiota. Nature Chemical Biology, 16(9), 933. https://doi.org/10.1038/s41589-020-0635-5.

Shamszadeh, S., Asgary, S., & Nosrat, A. (2019). Regenerative Endodontics: A Scientometric and Bibliometric Analysis. Journal of Endodontics, 45(3), 272–280. Doi:10.1016/j.joen.2018.11.010.

Zhong, B., Wu, H., Li, H., Sepasgozar, S., Luo, H., & He, L. (2019). A scientometric analysis and critical review of construction related ontology research. Automation in Construction, 101, 17–31. Doi:10.1016/j.autcon.2018.12.013.

Zyoud, Sa’ed H., Waring, W. S., Al-Jabi, S. W., & Sweileh, W. M. (2017). Global cocaine intoxication research trends during 1975-2015: A bibliometric analysis of Web of Science publications. Substance Abuse: Treatment, Prevention, and Policy, 12(1), 1–15. https://doi.org/10.1186/s13011-017-0090-9.

Aazami, H., DehghanBanadaki, H., Ejtahed, H. S., Fahimfar, N., Razi, F., Soroush, A. R., Hasani-Ranjbar, S., Pasalar, P., Ahmadi Badi, S., Siadat, S. D., & Larijani, B. (2020). The landscape of microbiota research in Iran; a bibliometric and network analysis. Journal of Diabetes and Metabolic Disorders, 19(1), 163–177. https://doi.org/10.1007/s40200-020-00488-2

Zyoud, Sa’Ed H., Smale, S., Waring, W. S., Sweileh, W. M., & Al-Jabi, S. W. (2019). Global research trends in microbiome-gut-brain axis during 2009-2018: A bibliometric and visualized study. BMC Gastroenterology, 19(1), 1–11. https://doi.org/10.1186/s12876-019-1076-z.

Albuquerque, P. C., Castro, M. J. C., Santos-Gandelman, J., Oliveira, A. C., Peralta, J. M., & Rodrigues, M. L. (2017). Bibliometric Indicators of the Zika Outbreak. PLoS Neglected Tropical Diseases, 11(1), 1–6. https://doi.org/10.1371/journal.pntd.0005132.

Zongyi Y, Dongying C, Baifeng L. (2016). Global regulatory T-cell research from 2000 to 2015: a bibliometric analysis. PLoS One.; 11(9):e0162099.

Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R. (2016). Microbiome-wide association studies link dynamic microbial consortia to disease. Nature, 535(7610), 94–103. https://doi.org/10.1038/nature18850.

Nath, K., & Thaiss, C. A. (2019). Digitalizing the Microbiome for Human Health. MSystems, 4(3), 1–4. https://doi.org/10.1128/msystems.00129-19.

Persson, O., R. Danell, J. Wiborg Schneider. (2009). How to use Bibexcel for various types of bibliometric analysis. In Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th Birthday, ed. F. Åström, R. Danell, B. Larsen, J. Schneider, Leuven, Belgium: International Society for Scientometrics and Informetrics. p 9–24.

Batagelj, V., & Mrvar, A. (1998). Pajek-program for large network analysis. Connections, 21(2), 47–57.

De Nooy, W., Mrvar, A., & Batagelj, V. (2018). Exploratory social network analysis with Pajek (3rd Ed.). Cambridge: Cambridge University Press.

Sci2 Team: Science of Science (Sci2) Tool, http:// sci.slis.indiana.edu (2009) Indiana University and SciTech Strategies.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. BT - International AAAI Conference on Weblogs and Social. International AAAI Conference on Weblogs and Social Media, 361–362.

Liu, J. S., Lu, L. Y. Y., & Ho, M. H. C. (2019). A few notes on main path analysis. Scientometrics, 119(1), 379–391. https://doi.org/10.1007/s11192-019-03034-x.

Delsuc, F., Metcalf, J. L., Wegener Parfrey, L., Song, S. J., González, A., & Knight, R. (2014). Convergence of gut microbiomes in myrmecophagous mammals. Molecular Ecology, 23(6), 1301–1317. https://doi.org/10.1111/mec.12501.

Eilam O, Zarecki R, Oberhardt M, Ursell LK, Kupiec M, Knight R, Gophna U, Ruppin E. (2014). Glycan degradation (GlyDeR) analysis predicts mammalian gut microbiota abundance and host diet-specific adaptations. Mbio. Doi: 10.1128/mBio.01526-14.

Martin, F.-P. J., Dumas, M.-E., Wang, Y., Legido-Quigley, C., Yap, I. K. S., Tang, H., Zirah, S., Murphy, G. M., Cloarec, O., Lindon John C.and Sprenger, N., Fay, L. B., Kochhar, S., vanBladeren, P., Holmes, E., & Nicholson, J. K. (2007). A top-down systems biology view of microbiome-mammalian metabolicinteractions in a mouse model. Molecular Systems Biology, 3. https://doi.org/10.1038/msb4100153.

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. (2012). Human gut microbiome viewed across age and geography. Nature. 486:222–7. Doi: 10.1038/nature11053.

Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., González, A., Fontana, L., Henrissat, B., Knight, R., & Gordon, J. I. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332(6032), 970–974. https://doi.org/10.1126/science.1198719.

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108(SUPPL. 1), 4516–4522. https://doi.org/10.1073/pnas.1000080107.

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., & Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science (New York, N.Y.), 320(5883), 1647–1651. https://doi.org/10.1126/science.1155725.

Sanders, J. G., Beichman, A. C., Roman, J., Scott, J. J., Emerson, D., McCarthy, J. J., & Girguis, P. R. (2015). Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nature Communications, 6, 1–8. https://doi.org/10.1038/ncomms9285.

Groussin, M., Mazel, F., Sanders, J. G., Smillie, C. S., Lavergne, S., Thuiller, W., & Alm, E. J. (2017). Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nature Communications, 8. https://doi.org/10.1038/ncomms14319.

Brian V. Jones, Máire Begley, Colin Hill, Cormac G. M. Gahan, Julian R. Marchesi. (2008). Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences Sep, 105 (36) 13580-13585; Doi: 10.1073/pnas.0804437105.

Yap, I. K. S., Li, J. V, Saric, J., Martin, F., Davies, H., Wang, Y., Wilson, I. D., Nicholson, J. K., Utzinger, J., Marchesi, J. R., & Holmes, E. (n.d.). (2008). Metabonomic and Microbiological Analysis of the Dynamic Effect of Vancomycin-Induced Gut Microbiota Modification in the Mouse J Proteome Res. 2008; 7(9):3718-3728. Doi: 10.1021/pr700864x.

William R. Wikoff, Andrew T. Anfora, Jun Liu, Peter G. Schultz, Scott A. Lesley, Eric C. Peters, Gary Siuzdak. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences, 106 (10) 3698-3703; Doi: 10.1073/pnas.0812874106.

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), 1–12. https://doi.org/10.1088/1742-5468/2008/10/P10008.

E Fonseca, B. de P. F., Sampaio, R. B., Fonseca, M. V. de A., & Zicker, F. (2016). Co-authorship network analysis in health research: Method and potential use. Health Research Policy and Systems, 14(1), 1–10. https://doi.org/10.1186/s12961-016-0104-5.

Song, S. J., Sanders, J. G., Delsuc, F., Metcalf, J., Amato, K., Taylor, M. W., Mazel, F., Lutz, H. L., Winker, K., Graves, G. R., Humphrey, G., Gilbert, J. A., Hackett, S. J., White, K. P., Skeen, H. R., Kurtis, S. M., Withrow, J., Braile, T., Miller, M., … Knight, R. (2020). Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio, 11(1), 1–14. https://doi.org/10.1128/mBio.02901-19.

Shih, M., Feng, J., & Tsai, C.-C. (2008). Research and trends in the field of e-learning from 2001 to 2005: A content analysis of cognitive studies in selected journals. Computers & Education, 51(2), 955–967. https://doi.org/10.1016/j.compedu.2007.10.004.

Nishida, A. H., & Ochman, H. (2018). Rates of gut microbiome divergence in mammals. Molecular ecology, 27(8), 1884–1897. https://doi.org/10.1111/mec.14473.

Amato, K. R., Sanders, J. G., Song, S. J., Nute, M., Metcalf, J. L., Thompson, L. R., Morton, J. T., Amir, A., McKenzie, V. J., Humphrey, G., Gogul, G., Gaffney, J., Baden, A. L., Britton, G. A. O., Cuozzo, F. P., Di Fiore, A., Dominy, N. J., Goldberg, T. L., Gomez, A., … Leigh, S. R. (2019). Evolutionary trends in host physiology outweigh dietary niche instructuring primate gut microbiomes. ISME JOURNAL, 13(3), 576–587. https://doi.org/10.1038/s41396-018-0175-0.

Garber, P. A., Mallott, E. K., Porter, L. M., & Gomez, A. (2019). The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a small-bodied primate. American Journal of Primatology, 81(10–11), 1–13. https://doi.org/10.1002/ajp.23003.

Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P., & Pringle, R. M. (2019). Covariation of diet and gut microbiome in African megafauna. Proceedings of the National Academy of Sciences of the United States of America, 116(47), 23588–23593. https://doi.org/10.1073/pnas.1905666116.

Holly L. Lutz, Elliot W. Jackson, Paul W. Webala, Waswa S. Babyesiza, Julian C. Kerbis Peterhans, Terrence C. Demos, Bruce D. Patterson, Jack A. Gilbert. (2019). Ecology and Host Identity Outweigh Evolutionary History in Shaping the Bat Microbiome. mSystems Nov, 4 (6) e00511-19; Doi: 10.1128/mSystems.00511-19.

Mann, A. E., Mazel, F., Lemay, M. A., Morien, E., Billy, V., Kowalewski, M., Di Fiore, A., Link, A., Goldberg, T. L., Tecot, S., Baden, A. L., Gomez, A., Sauther, M. L., Cuozzo, F. P., Rice, G. A. O., Dominy, N. J., Stumpf, R., Lewis, R. J., Swedell, L., … Wegener Parfrey, L. (2020). Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME Journal, 14(2), 609–622. https://doi.org/10.1038/s41396-019-0551-4.

Amato, K. R., Kuthyar, S., Ekanayake-Weber, M., Salmi, R., Snyder-Mackler, N., Wijayathunga, L., Vandercone, R., & Lu, A. (2020). Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica, January, 1–10. https://doi.org/10.1111/btp.12805.

Knowles, S. C. L., Eccles, R. M., & Baltrūnaitė, L. (2019). Species identity dominates over environment in shaping the microbiota of small mammals. Ecology Letters, 22(5), 826–837. https://doi.org/10.1111/ele.13240.

Groussin, M., Mazel, F., & Alm, E. J. (2020). Co-evolution and Co-speciation of Host-Gut Bacteria Systems. Cell Host and Microbe, 28(1), 12–22. https://doi.org/10.1016/j.chom.2020.06.013.

Jha AR, Shmalberg J, Tanprasertsuk J, Perry L, Massey D, Honaker RW (2020) Characterization of gut microbiomes of household pets in the United States using a direct-to-consumer approach. PLoS ONE 15(2): e0227289. https://doi.org/10.1371/journal.pone.0227289.

Kirsten Grond, Kayce C Bell, John R Demboski, Malia Santos, Jack M Sullivan, Sarah M Hird.(2020). No evidence for phylosymbiosis in western chipmunk species, FEMS Microbiology Ecology, Volume 96, Issue 1, fiz182. https://doi.org/10.1093/femsec/fiz182.

Lu, K., Yu, S., Yu, M., Sun, D., Huang, Z., Xing, H., Bi, J., Li, Z., Li, Z., Liu, X., Kong, C., & Zhu, Y. (2018). Bibliometric analysis of tumor immunotherapy studies. Medical Science Monitor, 24, 3405–3414. https://doi.org/10.12659/MSM.910724.

Van Rijsbergen, C. J. (1977). A theoretical basis for the use of co-occurrence data in information retrieval. Journal of Documentation, 33(2), 106–119. https://doi.org/10.1108/eb026637.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Deepa Azhchath Vasu, Tony Grace, Amritha Achuthkumar, Revathy Arya Suresh. S

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.